2007.8~2011.6  中国矿业大学  材料科学与工程专业  工学学士学位;

2011.8~2016.9  浙江大学  材料物理与化学专业  工学博士学位;

2014.9~2016.2  美国佐治亚理工学院(GT)  王中林课题组 联合培养博士;

2016.9  加入苏州大学功能纳米与软物质研究院(FUNSOM)



孙旭辉教授课题组(课题组链接: http://nano.suda.edu.cn/green/index.asp)



1. 气敏传感材料制备及其机理研究

2. 纳米能源材料及自驱动传感系统研究

3. 基于摩擦纳米发电机的新能源器件研究

4. 柔性/可穿戴电子学




Google Scholar: https://scholar.google.com/citations?user=_AP52WgAAAAJ&hl=zh-CN

SCI Publication Record: http://www.researcherid.com/rid/B-2462-2016

具体如下(δ: 共同作者; *: 通讯作者):

[1] Z. Wenδ, M.-H. Yehδ, H. Guoδ, J. Wang, Y. Zi, W. Xu, L. Zhu, J. Deng, X. Wang, L. Zhu, X. Sun and Z. L. Wang*. Self-Powered Textile System by Hybridizing All-Fibers-shaped Triboelectric Nanogenerator - Dye-Sensitized Solar Cell - Supercapacitor for Wearable Electronics. Science Advances, 2016, 2, e1600097.

[2] Z. Wenδ, H. Guoδ, Y. Ziδ, M.-H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu and Z. L. Wang*. Harvesting Broad Frequency-band Blue Energy by a Triboelectrification-Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534. (2016 SCI-IF 13.334)

[3] Z. Wenδ, J. Chenδ, M.-H. Yehδ, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu* and Z. L. Wang*. Blow-driven triboelectric nanogenerator as an active alcohol breathe analyzer. Nano Energy, 2015, 16, 38-46. (2016 SCI-IF 11.553)

[4] Z. Wen, L. Zhu*, Z. Zhang and Z. Ye. Fabrication of gas sensor based on mesoporous rhombus-shaped ZnO rod arrays. Sensors and Actuators B: Chemical, 2015, 208, 112-121. (2016 SCI-IF 4.758)

[5] Z. Wen, L. Zhu*, Y. Li, Z. Zhang and Z. Ye. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2014, 203, 873-879. (2016 SCI-IF 4.758)

[6] Z. Wen, L. Zhu*, L. Li, L. Sun, H. Cai and Z. Ye. A fluorine-mediated hydrothermal method to synthesize mesoporous rhombic ZnO nanorod arrays and their gas sensor application. Dalton Transactions, 2013, 42, 15551-15554. (2016 SCI-IF 4.177)

[7] Z. Wen, L. Zhu*, W. Mei, L. Hu, Y. Li, L. Sun, H. Cai and Z. Ye. Rhombus-shaped Co3O4 nanorod arrays for high-performance gas sensor. Sensors and Actuators B: Chemical, 2013, 186, 172-179. (2016 SCI-IF 4.758)

[8] Z. Wen, L. Zhu*, W. Mei, Y. Li, L. Hu, L. Sun, W. Wan and Z. Ye. A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing. Journal of Materials Chemistry A, 2013, 1, 7511-7518. (2016 SCI-IF 8.262)

[9] J. Wangδ, Z. Wenδ, Y. Ziδ, P. Zhou, J. Lin, H. Guo, Y. Xu and Z. L. Wang*. All-Plastic-Materials Based Self-charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Advanced Functional Materials, 2016, 26, 1070-1076. (2016 SCI-IF 11.382)

[10] H. Guoδ, Z. Wenδ, Y. Ziδ, M.-H. Yeh, L. Zhu, C. Hu and Z. L. Wang*. A Water-Proof Triboelectrification and Electromagnetic Induction Hybrid Generator for Harvesting Rotational Energy in Harsh Environments. Advanced Energy Materials, 2016, 6, 1501593. (2016 SCI-IF 15.230)

[11] J. Wangδ, Z. Wenδ, Y. Ziδ, L. Lin, C. Wu, H. Guo, Y. Xi, Y. Xu and Z. L. Wang*. Self-powered electrochemical synthesis of polypyrrole from pulsed output of triboelectric nanogenerator as a sustainable energy system. Advanced Functional Materials, 2016, 26, 3542-3548. (2016 SCI-IF 11.382)

[12] Y. Ziδ, H. Guoδ, Z. Wenδ, M.-H. Yeh, C. Hu and Z. L. Wang*. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10, 4797-4805. (2016 SCI-IF 13.334)

[13] L. Zhuδ, *, Z. Wenδ, W. Mei, Y. Li and Z. Ye. Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)・0.11H2O and their electrochemical properties. The Journal of Physical Chemistry C, 2013, 117, 20465-20473. (2016 SCI-IF 4.509)

[14] Z. Zhang, Z. Wen, Z. Ye and L. Zhu*. Gas sensor based on ultrathin porous Co3O4 nanosheets for selective acetone detection at low temperature. RSC Advances, 2015, 5, 59976-59982. (2016 SCI-IF 3.289)

[15] Z. Zhang, L. Zhu*, Z. Wen, Z. Ye. Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sensors and Actuators B: Chemical, 2017, 238, 1052-1059. (2016 SCI-IF 4.758)

[16] S. Liδ, S. Wangδ, Y. Zi, Z. Wen, L. Long, G. Zhang and Z. L. Wang*. Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states. ACS Nano, 2015, 9, 7479-7487. (2016 SCI-IF 13.334)

[17] Y. Ziδ, S. Niuδ, J. Wang, Z. Wen, W. Tang and Z. L. Wang*. Standards and Figure of Merits for Quantifying the Performance of Triboelectric Nanogenerators. Nature Communications, 2015, 6, 8376. (2016 SCI-IF 111.329)

[18] M.-H. Yehδ, H. Guoδ, L. Lin, Z. Wen, Z. Li, C. Hu and Z. L. Wang*. Rolling friction enhanced free-standing triboelectric nanogenerators and its applications in self-powered electrochemical recovery system. Advanced Functional Materials, 2016, 26, 1504-1062. (2016 SCI-IF 11.382)

[19] W. Wan, J. Huang, L. Zhu*, L. Hu, Z. Wen, L. Sun and Z. Ye. Defects induced ferromagnetism in ZnO nanowire arrays doped with copper. CrystEngComm, 2013, 15, 7887-7894. (2016 SCI-IF 3.849)

[20] W. Dai, X. Pan*, S. Chen, C. Chen, Z. Wen, H. Zhang, and Z. Ye*. Honeycomb-like NiO/ZnO heterostructured nanorods: photochemical synthesis, characterization, and enhanced UV detection performance. Journal of Materials Chemistry C, 2014, 2, 4606-4614. (2016 SCI-IF 5.066)

[21] H. Guoδ, J. Chenδ, M.-H. Yeh, X. Fan, Z. Wen, Z. Li, C. Hu* and Z. L. Wang*. An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584. (2016 SCI-IF 13.334)

[22] Y. Ziδ, J. Wangδ, S. Wang, S. Li, Z. Wen, H. Guo and Z. L. Wang*. Effective Energy Storage from Triboelectric Nanogenerators. Nature Communications, 2016, 7, 10987. (2016 SCI-IF 11.329)

[23] Z. Liδ, J. Chenδ, H. Guo, X. Fan, Z. Wen, M. -H. Yeh, C. Yu, X. Cao* and Z. L. Wang*. Triboelectrification-Enabled Self-Powered Detection and Removal of Heavy Metal Ions in Wastewater. Advanced Materials, 2016, 28, 2983-2991. (2016 SCI-IF 18.960)

[24] L. Ding, M. Zhao*, Y. Ma, S. Fan, Z. Wen, J. Huang, J. Liang, S. Chen*. Triggering interface potential barrier: A controllable tuning mechanism for electrochemical detection. Biosensors and Bioelectronics, 2016, 85, 869-875. (2016 SCI-IF 7.476)

[25] Q. Jiang, J. Lu*, Y. Yuan, L. Sun, X. Wang, Z. Wen, Z. Ye, D. Xiao, H. Ge and Y. Zhao. Tailoring the morphology, optical and electrical properties of DC-sputtered ZnO: Al films by post thermal and plasma treatments. Materials Letters, 2013, 106, 125-128. (2016 SCI-IF 2.437)

[26] Y. Li, L. Zhu*, Y. Guo, J. Jiang, L. Hu, Z. Wen, L. Sun and Z. Ye. Iodine-ion-induced size-tunable Co3O4 nanowires and the size-dependent catalytic performance for CO oxidation. ChemCatChem, 2013, 5, 3576-3581. (2016 SCI-IF 4.724)

[27] J. Chenδ, J. Yangδ, H. Guo, Z. Li, L. Zheng, Y. Su, Z. Wen, X. Fan and Z. L. Wang*. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. ACS Nano, 2015, 9, 12334-12343. (2016 SCI-IF 13.334)

[28] Y.-C. Lai, S. Niu, J. Deng, W. Peng, C. Wu, R. Liu, Z. Wen, Z. L. Wang*. Electric Eel-Skin-Inspired Mechanically Durable and Super-Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronic-Skin Applications. Advanced Materials, 2016, DOI: 10.1002/adma.201603527. (2016 SCI-IF 18.960)

[29] Z. Liδ, J. Chenδ, J. Zhouδ, L. Zheng, K. Pradel, X. Fan, H. Guo, Z. Wen, M.-H. Yeh, W. Yu and Z. L. Wang*. High-efficiency Ramie Fiber Degumming and Self-powered Degumming Wastewater Treatment Using Triboelectric Nanogenerator. Nano Energy, 2016, 22, 548-557. (2016 SCI-IF 11.553)

[30] L. Zhang, Z. Gao, C. Liu, Y. Zhang, Z. Tu, X. Yang, F. Yang, Z. Wen, L. Zhu, R. Liu, Y. Li* and L. Cui*. Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. Journal of Materials Chemistry A, 2015, 3, 2794-2801. (2016 SCI-IF 8.262)

[31] J. Chenδ, J. Yangδ, Z. Liδ, X. Fan, Y. Zi, Q. Jing, H. Guo, Z. Wen, K. Pradel, S. Niu and Z. L. Wang*. Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano, 2015, 9, 3324-3331. (2016 SCI-IF 13.334)

[32] F. Yiδ, X. Wangδ, S. Niuδ, S. Li, Y. Yin, K. Dai, G. Zhang, L. Lin, Z. Wen, H. Guo, J. Wang, M.-H. Yeh, Y. Zi, Q. Liao, Z. You, Y. Zhang* and Z. L. Wang*. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.




Copyright © 2012 苏州大学纳米科学技术学院 All Rights Reserved.
  地址:苏州工业园区仁爱路199号910楼  邮编:215123
您是第 位访问者