斯洛伐克科学院物理所Krisztian Palotas教授 7月17日上午学术报告
发布时间:2018-07-02 点击:31

报告人:Prof. Krisztian Palotas(斯洛伐克科学院物理所)

报告题目:Scanning tunneling microscopy: Recent challenges and future prospects

报告时间:10:00 AM, Jul. 17th (Tuesday)



Scanning tunneling microscopy (STM) contributed considerably to the development of nanoscience and nanotechnology. In the talk some key aspects of electron tunneling theoretical models are pointed out, which have to be taken into account for proper interpretations of experimental STM images. An obvious example is the consideration of tip electron states going beyond the classical s-wave tip model of Tersoff and Hamann, which can dramatically affect the calculated STM contrasts [1]. In addition, the occurrence of tip orbital interference effects were recently highlighted, which can be quantified by revising the electron tunneling model of Chen [2]. Another challenge is how to measure vector quantities in scanning probe microscopies. The measurement of force vectors in atomic force microscopy (AFM) has recently been reported [3]. Considering spin-polarized STM (SP-STM), and the intrinsic charge and spin properties of the electron, a theory of combined tunneling charge and vector spin transport is presented [4], which allows the calculation of tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, in high spatial resolution on complex real-space spin textures, e.g. topologically protected skyrmions [5,6]. The possibility of obtaining local information on tunneling vector spin transport in SP-STM is expected to have a huge impact on new developing fields in spintronics. Finally, the emergence of topological magnetic objects on surfaces demands for methods for the unique identification of their topological properties, and SP-STM is proposed to fulfill this task [6,7].


1. G. Mándi, G. Teobaldi, K. Palotás, Prog. Surf. Sci. 90, 223 (2015).

2. G. Mándi, K. Palotás, Phys. Rev. B 91, 165406 (2015).

3. Y. Naitoh, R. Turansky, J. Brndiar, Y. J. Li, I. Štich, Y. Sugawara, Nature Phys. 13, 663 (2017).

4. K. Palotás, G. Mándi, L. Szunyogh, Phys. Rev. B 94, 064434 (2016).

5. K. Palotás, L. Rózsa, L. Szunyogh, Phys. Rev. B 97, 174402 (2018).

6. K. Palotás, arXiv:1804.09096 (2018).

7. K. Palotás, L. Rózsa, E. Simon, L. Udvardi, L. Szunyogh, Phys. Rev. B 96, 024410 (2017).

联系人:林海平 副教授


Copyright © 2012 苏州大学纳米科学技术学院 All Rights Reserved.
  地址:苏州工业园区仁爱路199号910楼  邮编:215123
您是第 位访问者