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We develop the continuous self-avoiding walk (CSAW) methodology for investigating temperature dependent
thermodynamic properties of finite polymer chains without imposing a lattice. This leads to a new concept:
the free energy theta temperature,TθF, at which the free energy is proportional to chain length. AboveTθF,
the polymer chain-solvent mixture leads to a single phase, whereas belowTθF the polymer solvent system has
a positive surface tension with a tendency to phase separation to form a globular phase. For finite chains this
coil-globule transition lies above the geometric theta temperature at which the distribution describes a Gaussian
coil. CSAW provides the basis for a new approach to predict globular properties of real polymers.

A number of powerful mathematical models have been
developed to describe the behavior of linear polymer molecules
in a good solvent. These include the self-avoiding walk (SAW)
on a lattice,1,2 the bead-rod model,3 and the continuum Edwards
model.4,5

Here we develop SAW methodology on continuous space
(CSAW) to enable the investigation of temperature-dependent
geometric and thermodynamic properties (enthalpy and entropy)
of finite polymer chains at finite temperatures. CSAW leads to
a new critical point: the free energy theta temperature,TθF, at
which the free energy is proportional to chain length. Above
TθF, the polymer chain-solvent mixture leads to a single phase,
the solvation phase, whereas belowTθF the polymer chain
solvent system has a positive surface tension and tends toward
phase separation to form a globular phase. In addition, CSAW
enables the prediction of properties for polymers using realistic
interaction potentials.

The random walk on a lattice was proposed by Polya6 in 1921
and has been studied broadly and systematically. It has a
powerful theoretical significance for mathematics, and the lattice
walk model has been the basis for many applications in physics,
chemistry, and biology.

The self-avoiding walk (SAW)1,2 is a random pathway that
does not contain self-intersections, serving as a model for linear
polymers and playing a central role in understanding polymer
statistics. The SAW has been shown to be equivalent to the
N)0 case of theN-vector model,7 making SAW an important
test case for the theory of critical phenomena.

Many properties of polymer materials (e.g., rubber elasticity,
liquid crystallinity) are well characterized in terms of single-
chain conformations and dynamics. Indeed the use of SAW to
describe long flexible polymer chains with excluded volume8

has led to remarkably simple scaling properties that dominate
the behavior of many physical properties, allowing a generic
understanding of features common to many chemically different
systems. However, these scaling rules are limited to infinite

temperature and do not include realistic interaction parameters
needed to distinguish the properties of real materials. Of
particular interest here are the properties of polymer chains in
solution. The phase behavior of such systems is of fundamental
interest with enormous practical applications for predicting the
processing and mechanical properties of various plastic materi-
als.

The continuous self-avoiding walk (CSAW) on continuous
Euclidean space describes polymer chains with fixed bond length
and bond angle, but with continuously variable torsion and
VDW interactions. Previous studies of SAW1,2 were based on
Euclidean lattices, lattice self-avoiding walk (LSAW).

To define the continuous self-avoiding walk, we start with a
united atom force field, in which each monomer is represented
by one united atom or bead. Here we use the Siepmann-
Karanorni-Smit force field9,10 (SKSFF) based on fitting to
alkanes. This uses a Lennard-Jones 12-6 van der Waals (vdW)
potential (well depth isε/kB ) 47 K and inner wall distance is
σ ) 0.393 nm) plus a torsional potential, while the bond
distances (Rb ) 0.154 nm) and bond angles (θ ) 114.0°) are
fixed. The torsion potential is short ranged and hence does not
affect the global scale properties of the polymer chain.

Figure 1a illustrates a self-avoiding walk on a 2D square
lattice. The partition functionZn or the number of SAWs is
straightforward here:Z0 ) 1, Z1 ) 4, Z2 ) 12, etc. Figure 1b
defines the CSAW. Each step in CSAW involves adding by
one additional united atom with fixed bond length and angle to
the chain, but allowing continuous torsion. The partition function
Zn or the number of SAWs of CSAW is counted asZ0 ) 1, Z1

) 2π, Z2 ) Z1*2π (since we fix bond length/angle, the possible
positions of the second step comes from the torsion, leading to
2π), Z3 ) Z2*2π, etc. For N > 4 united atoms, there are
repulsive van der Waals (vdW) interactions that induce self-
avoidance, reducing the contribution for each step below 2π
(Figure 1c).

The calculations of the CSAW use the CCBB algorithm,11,12
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biased sampling (CCB) with Boltzmann-factor enrichment
(BGB). CCB is a direct MC sampling, using a fast algorithm
for evaluating the torsion sampling weighting function. The BFB
method is an improved enrichment method, which introduces a
configurational-dependent enrichment procedure with correct
bias correction and automatic population control. Combining
these two types of samplings (CCBB) dramatically improves
MC convergence.

We first examine the following properties of CSAW and
compare with traditional LSAW: The partition functionZn or
the number ofn-step SAWs; the mean-square end-to-end
distance ofn-step SAWs<Re

2>n, and the radius of gyration
<Rg

2>n. At infinite temperature (athermal), LSAW leads to
asymptotic forms13 at largen of

where µ is the monomer partition function (also termed the
connective constant). The values ofµ and the amplitudesA, B,
C vary from lattice to lattice, while the exponentsγ, ν, and the
amplitude ratio14 C/B are universal; that is they depend only
on the space dimensionalityd but not on the particular lattice
chosen.

The properties of the traditional LSAW at infinite temperature
are simple to study since it is not necessary to use energy terms
to account for self-avoidance. For CSAW, wemust include
energy terms to realize self-avoidance, which arises from
repulsive vdW interaction. Thus, to obtain the infinite temper-
ature limits to compare with LSAW, we perform CSAW at
extremely high temperatures (7200 K, 50 400 K, and 5 040 000
K). The molecule cannot decompose since bond lengths and
angles are fixed. Only long-range vdW interactions affect global
scale properties.

To determine these parameters with high-precision, we use
appropriate extrapolation method to reduce the error arising from
finite length, theo(1) term. CSAW is much more expensive
than LSAW, making it impractical to sample sufficient data for

largeN to reduce finite size error. Thus for chain length up to
N ) 500 we sample enough chains or walks,∼3 × 108, to
reduce statistical error and then use finite size correction
approaches to derive the properties. In comparison, exact
enumeration15 for LSAW has been carried out for chain lengths
up to N e 26 (3D) without statistical error; Monte Carlo
approaches16 to LSAW have reached chain/walk lengths ofN
∼ 80 000 with∼107 walks.

Theo(1) term of<Re
2> and<Rg

2> in eqs 2 and 316-18 scales
as∼n-0.5 (∼n-0.56 in ref 16); hence Figure 2a plotsνeff(n) )
1/2 log2 <Rn

2>/<Rn/2
2> againstn-0.5, showing that the tem-

perature dependence ofνeff is weak above 7200 K. Linear
extrapolation ofνeff to N ) ∞ in the range of 0.045< N0-.5 <
0.07 leads to 0.5848(1) at 5 040 000 K; 0.5822(1) at 50 400 K;
0.5751(1) at 7200 K. Extrapolating these values leads toν )
0.585( 0.003 for CSAW, which is consistent withν ) 0.588
( 0.001for LSAW.15,16This confirms thatν is a universal scale
property shared by different types of LSAW and CSAW.

Usingν ) 0.585 for CSAW and assumingo(1) ∼ N0-.5, we
estimate the amplitudeB and C in eqs 2 and 3. Table 1
summarizes the results and compares with LSAW, showing that
B andC from CSAW are quite different from LSAW, butC/B
is universal. For CSAW the universal quantityC/B is not
sensitive to the temperature, whileB andC are sensitive to the
temperature.

To analyze the quantities in eq 1, we follow the ratio method
shown in eq 4, in whichrn is analyzed against 1/n15 to second
order in 1/n.19

The result is shown in Figure 2b, which leads toγ andµ for
CSAW at different temperatures (to second order in 1/n). Using

Figure 1. (a) Self-avoiding walk on a 2D square lattice. (b) Continuous
self-avoiding walk on 3D space. (c) Self-avoidance in CSAW comes
from the vdW repulsive interactions, which reduces the contribution
for one step below 2π. A cut off distanceRc is applied for vdW
interactions. (d) One chain with length 2N, considered as connecting
two coils with lengthN.

Zn ) Aµnnγ-1[1 + o(1)] (1)

<Re
2>n ) Bn2ν[1 + o(1)] (2)

<Rg
2>n ) Cn2ν[1 + o(1)] (3)

Figure 2. (a) Dependence ofνeff(n) ) 1/2 log 2 <Rn
2>/<Rn/2

2> on
n-0.5 for CSAW at various temperatures. Each data point is averaged
from three samplings, with a standard error smaller than the symbol.
(b) Dependence ofrn ) Zn/Zn-1 on 1/n for CSAW. (c) Dependence of
exp[-(En - En-1)kT] on 1/n for CSAW. (d) Dependence of exp[-(Sn

- Sn-1)/k] on 1/n for CSAW. Each curve in (b) (c) (d) is shifted byy0

to have the same origin. The shiftedy0 from high temperature to low
temperature are 5.9291, 5.5204, 4.8046, 3.1893, 3.0467 in (b); 0.9939,
0.9645, 0.8747, 0.6416, 0.6235 in (c); and 0.1676, 0.1747, 0.1821,
0.2012, 0.2047 in (d).

rn ≡ Zn

Zn-1
≈ [1 + γ-1

n ]y ) [1 + γ - 1
n

+ const

n2 ]y (4)
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thisγ andµ, we obtainA from eq 1. These results are compared
with LSAW in Table 1. We see that the universal quantityγ is
not sensitive to the temperature and consistent with LSAW,
while lattice dependent quantitiesµ andA are sensitive to the
temperature and quite different from LSAW.µ for CSAW is
∼5.9, which is less than 2π due to the self-avoidance.

In eq 1, two termsµn and nγ-1 contribute to the partition
functionZn. The first termµn is the product of monomer partition
function µ. The gamma term,nγ-1, has not been previously
analyzed and we propose here a simple model to explain its
origin.

The dominantN dependent term in the free energy is
proportional toN (the volume term), whereA/RT) -aN. Now
we want to analyze the form of the dominant correctionsf(N),
writing

Consider one chain with length 2N, as two coils with lengthN,
but connected as shown in Figure 1d. The free energy is-a*2N
- bf(2N) - c. If Coil I and Coil II do not interact with other,
then the total free energy would be-2*aN -2*bf(N) - c. The
difference gives the interaction between Coil I and Coil II as
∆A/RT ) -bf(2N) + 2bf(N), which includes two parts:
repulsive (self-avoiding entropy) and attractive (enthalpy).

At T ) ∞, there is no attractive energy (athermal) leaving
only the repulsive part (self-avoiding entropy) between these
two coils. Thus∆A > 0. Becausef(N) < N andf(2N) < 2f(N),
thenb > 0. The volume occupied by the other coil scales asN
and the reduced entropy scales as ln(∆V) ∼ lnN. This suggests
thatf(N) has the lnN form and explains the origin of the gamma
term,nγ-1.

As the temperature decreases from infinity, the attractive
energy between two coils increases. When the attractive energy
exactly balances with the repulsive part between these two coils,
∆A ) 0 andb ) 0. At sufficiently low temperature, the attractive
energy dominates and∆A < 0 andb < 0. Eventually, the chain
collapses leading toV∼N. In this case the correction term is
expected to have the form of a surface energy, leading to an
N2/3 dependence.

The point at which the attractive and repulsive parts balance
is the coil-globule transition temperature, above which the
polymer chains and solvent form a single phase and below which
the chains tend to phase separate to form globules. To determine
this coil-globule transition temperature, we plot ln(Zn/Zn-100)
against ln(n) in Figure 3a. We refer to the coil-globule transition
temperature at which ln(Zn/Zn-100) is constant at largen as the
free energy theta temperature,TθF, at which free energy is
proportional toN and is the sum of the free energies for each
monomer, leading to an ideal solution. [Note that the enthalpy
and entropy analysis in Figure 2 shows that the enthalpy and
entropy arenot the sums of monomer components (the correc-

tion term cancels).] Figure 3a shows that 1368 K< TθF < 1512
K for N up to 500.

Flory defined what we will refer to as the geometric theta
temperature,TθR, as the temperature at which ln(<Re

2>/n) is
constant at largen. This is the temperature at which the chain
describes a Gaussian coil. To determineTθR, we plot ln(<Re

2>/
n) against ln(n) in Figure 3b, where we see that 1224 K< TθR

< 1368 K for N up to 500.
For infinite chain/walk length,TθF ) TθR, so that there is

only one theta point, so that at the coil-globule transition energy
the chains describe a Gaussian coil. However, for finite chain
lengths Figure 3 shows thatTθF > TθR, (independent of the force
field description).12 Thus the coil-globule transition occurs at
the free energy theta temperature that lies above the temperature
at which the distribution describes a Gaussian coil.

The free energy of polymers in solution can be expressed in
terms ofΦ, the fraction of sites occupied by monomers as

At the temperature for whichø )1/2 there is no quadratic term
in Φ. Thus, ignoring higher order terms inΦ leads toµ ) 1-2ø
) 0. de Gennes refers to this as “the bare theta temperature”,26

which coincides in this case with the free energy theta
temperature we define herein.12

Whenø ) 1/2, theΦ2 term disappears, leaving higher order
terms dominated by theΦ3 term. This three-body term26 leads
to repulsive interactions that result in swelling the chain above
that of the Gaussian distribution. This shiftsTθF to a value higher
thanTθR.

Nidras18 introduced a nearest neighbor contact association
energy into LSAW and estimatedγt ) 0.9985 andνt ) 0.5001
at the transition point, implying a theta shift (γt < 1 andνt >
0.5), just as in CSAW.

TABLE 1: Universal Quantities (γ, ν, C/B) and Non-Universal Quantities (µ, A, B, C) from CSAW Compared with Various
Lattices for LSAW

γ µ A ν B C C/B

LSAW SC 1.158520 4.6840120 1.20520 0.588(1)16 1.21667(50)16 0.19455(7)16 0.1599(2)16

LSAW BCC 1.1612(8)21 6.530356(2)21 1.16(1)22 0.591(2)21 1.06(1)22 0.166(2)22 0.158(3)22

LSAW FCC 1.163(2)20 10.03643(6)20 1.16(2)22 0.5875(15)23 1.03(3)22 0.161(3)22 0.158(3)22

LSAW DA 1.161(2)24 2.8790(2)24 1.24(1)22 0.592(3)24 1.42(1)22 0.226(2)22 0.158(3)22

CSAW ∞K 1.164(2) 5.9(4) 0.004(1) 0.585(3) 5.2(1.5) 0.8(0.2) 0.1600(6)
CSAW 5040000K 1.1646(4) 5.9291(1) 0.004160(2) 0.5848(1) 5.2190(4) 0.83517(4) 0.16002(2)
CSAW 50400K 1.1663(8) 5.5204(1) 0.005305(2) 0.5822(1) 6.708(2) 1.0775(1) 0.16063(6)
CSAW 7200K 1.158(1) 4.80463(5) 0.00785(1) 0.5751(1) 7.067(1) 1.1437(2) 0.16184(5)

a See eqs 1, 2, and 3 for definitions.

A/RT) -aN - bf(N) - c (5)

Figure 3. (a) Dependence of ln(Zn/Zn-100) on ln(n) for CSAW. ln(Zn/
Zn-100) decreases monotonically with increasingN for Tg 1512 K, while
it increases with increasingN for Te 1368 K. Thus 1368 K<TθF <1512
K for N up to 500. (b) Dependence of ln(<Re

2>/n) on ln(n) for CSAW.
ln(<Re

2>/n) increases monotonically with increasingN for T g 1368
K, while it has a maximum and decreases with increasingN for T e
1224 K. Thus 1224 K< TθR < 1368 K for N up to 500.

F/T|site ) Φ/N lnΦ + 1/2 (1-2ø)Φ2 + 1/6 Φ3 + κ
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The correction termbf(N) in eq 4 can be analyzed in terms
of enthalpy and entropy components:bEfE(N) and bSfS(N).
Figure 2c,d plots exp[-(En - En-1)/kT] and exp[-(Sn - Sn-1)/
k] against 1/n. The slope at each temperature scales tobE or bS.

At T ) ∞ (athermal case), exp[-(En - En-1)/kT] is
independent of 1/n, as shown in Figure 2c. (At 5 040 000 K
the slope is 0.00001 and the linearityR2 is 0.0048.) Thus atT
) ∞, the correction termbEfE(N) vanishes. This confirms the
prediction25 by Des Cloizeau that the energy increment is
uniform at high temperature. The shiftsy0 from high temperature
to low temperature in Figure 2c are 0.9939, 0.9645, 0.8747,
0.6416, 0.6235, which approaches 1 atT ) ∞. This indicates
that the energy increment approaches 0 atT ) ∞.

In contrast, at high-temperature exp[-(Sn - Sn-1)/k] is linear
with 1/n as shown in Figure 2d with a linearityR2 ) 0.9981 at
5 040 000 K. This indicates that the correction term at high
temperature-b* f(N) comes from entropy not enthalpy.

The magnitudes of the slope in Figure 2c and 2d both increase
as the temperature decreases. The chain in Figure 1d normally
shrinks as the temperature decreases. This strengthens the
interactions between the two coils, which increases the correc-
tion termbE* fE(N), bS* fS(N), and the magnitude of the slope in
Figure 2c,d. The linearity in Figure 2c and 2d becomes worse
as the temperature decreases. This suggests thatfE(N) and fS-
(N) can be approximated as lnN better at high temperature than
at low temperature.

Summarizing, we define the continuous self-avoiding walk
(CSAW) on continuous Euclidean space, which leads to the
same values for the universal constants as lattice SAW models.
CSAW eliminates the use of a lattice, which has formed the
framework for most general analyses of polymers, including
Flory-Huggins theory and lattice SAW. CSAW allows us to
study enthalpy and entropy components and study the ensemble
at finite temperature. CSAW can be used to simulate real
polymers including block polymer, copolymer etc. rather than
the abstract description in lattice models.

CSAW leads to the new concept of free energy theta
temperature,TθF, as the temperature at which the free energy is
proportional to chain lengthN. AboveTθF, the single polymer
chain-solvent mixture leads to a single phase, the solvation
phase, whereas belowTθF the polymer chain has a positive
surface tension and tends toward phase separation from the
solvent to form a globular phase.

By eliminating the use of lattices we can study finite
temperatures with CSAW, allowing us distinguish the free
energy theta temperatures from the geometry theta temperature.
We find that the three-body terms makeTθF higher than the
geometric theta temperatureTθR for which the radius of gyration
is proportional toN.
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