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The new dynamic density functional method—mesoscopic dynamics (Mesodyn)—was used to simulate
microphage separation kinetics of aqueous pluronic solutions. The ‘equivalent chain’ method was used to
perform the parameterization of the Gaussian chain. Three kinds of pluronic solutions, i.e. (EO)s(PO);,(EO),
(L62), (EO),5(PO);0(EO),; (L64) and (EO);,(PO);s5(EO);, (P105), were investigated at different temperatures.
The factors influencing the self-assembly morphology of the copolymer solution were discussed. The
simulation results show that the less hydrophobic PO component, the less possibility there is of forming a core
of the hydrophobic region. The simulation results also indicate that an increase of temperature results in a
decrease in the interfacial area and an increase in the periodicity of the pluronic water system. The dynamic
evolution process of the system and the factors affecting the process were also investigated and discussed here.
The simulation results show that when the temperature increases, the phase separation process becomes slow.

Introduction

Many systems of academic and industrial interest are exam-
ples of soft condensed matter. These systems are composed of
mesoscale structures of size 10 to 100 nm which can be found
for example in polymer blends, block-copolymer systems, sur-
factant aggregates in detergent materials (e.g. shampoo), latex
particles, or drug delivery systems.

In the microscopic region, the phase behavior can be
modeled using a detailed molecular description, often with
techniques such as molecular dynamics and Monte Carlo
simulations. In the macroscopic region, phase separation
models can be based on equations of state, which are fitted to
macroscopic phase diagrams. In the mesoscopic region, local
concentration fields can be used as collective variables, in
order to obtain a description of self-assembly structures. The
mesoscopic dynamics models are receiving increased attention
as they form a bridge between fast molecular kinetics and
slow thermodynamic relaxation of macroscale properties.

Pluronic [block PEO-PPO-PEO copolymer, PEO =
poly(ethylene oxide), PPO = poly(propylene oxide)]: one
type of non-ionic surfactant, is widely used in detergency,
foam formation, dispersion stabilization, lubrication and drug
delivery and has received wide attention in the literature.!~>
The action of pluronic depends strongly on system morphol-
ogy, which is known to include micelles that can reversibly
gel, as well as bicontinuous, hexagonal and lamellar phases.
There are several factors contributing to the morphology for-
mation including temperature, polymer concentration, the
length ratio of the three blocks, etc. The Mesodyn method was
used here to simulate pluronic aqueous solutions and to study
the influence of temperature, the impact of the relative block
size of the polymer surfactant solution and the dynamic evolu-
tion of pluronic water mixtures.

In contrast to previous approaches aimed at classifying
morphologies by means of equilibrium theories, the Mesodyn
method recognizes the fact that by their very nature these pat-
terns are irregular, and hence can only be characterized via
the dynamic properties of the systems. From an industrial per-
spective this approach is much more realistic, since typical
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processing times are orders of magnitude shorter than the
thermodynamic relaxation time, and thus such non-perfect
states contribute substantially to the behavior of the final
material.

Method

In the Mesodyn method, the molecules are defined on a
coarse-grained level as ‘Gaussian chains of beads’. Each bead
is of a certain component type representing covalently bonded
groups of atoms such as those given by one or a few mono-
mers of a polymer chain. Chemically specific information
about the molecular ensemble enters into Mesodyn via
material parameters such as the self-diffusion coefficients of
the bead components, the Flory-Huggins interaction param-
eters, the bead sizes and the molecular architecture (chain
length, branching, etc.).

The dynamics of the system is described by a set of so-
called functional Langevin equations. In simple terms these
are diffusion equations in the component densities which take
account of the noise in the system. By means of numerical
inversions, the evolution of the component densities is simu-
lated, starting from an initially homogeneous mixture in a
cube of typical size 100-1000 nm and with periodic boundary
conditions.

The basic idea in the Mesodyn method is the density func-
tional theory. It is based on the idea that the free energy F of
an inhomogeneous liquid is a functional of the local density
function p. From the free energy, all thermodynamic functions
can be derived, so that for instance phase transitions can be
investigated as a functional of the density distribution in the
system.

In Mesodyn, the method used to model the time evolution
of a mesoscopic system is the time-dependent Ginzburg—
Landau model. Ginzburg-Landau models generally consist of
a phenomenological expansion of the free energy in the
density, which is used to model thermodynamic forces, and a
set of stochastic diffusion or modified Navier-Stokes equa-
tions to predict the time evolution. The numerical calculation
involves integration of functional Langevin equations, given
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an implicit inverse Gaussian density functional expression for
the intrinsic chemical potentials. Local non-ideal interactions
are included via a mean field. Mesoscopic fluctuations are
introduced by the explicit inclusion of noise sources, accord-
ing to the fluctuation—dissipation theorem. Work on coarse-
grained time-dependent Ginzburg-Landau models can be
found in refs. 6-10. For a detailed description of the theory of
Mesodyn, see ref. 11.

Mesodyn is based on a dynamic variant of mean-field
density functional theory. The latter is based on a theorem
which basically states that there is a one-to-one mapping
between the distribution functions of the system, the densities
and an external potential field.

On a coarse-grained time scale, p2(r) is defined as a collec-
tive concentration field of the beads of type I at an instant of
time and serves as a reference level. There will be a certain
distribution of bead positions, defined as P(R;;, ..., R,n)s
where R;, is the position of bead s from chain 6. Given the
distribution ¥ we can define the collective concentration of
the beads s from all chains by the average of a microscopic
density operator:

n N
pil¥10r) = Zl 21 o5 Tr ¥ 6(r — R, 1)

y=1s=
where 6X is a Kronecker delta function with value 1 when
bead s is of type I and 0 otherwise. It is assumed that in the
slowly relaxing liquid the interactions do not depend on the
momenta and therefore the integration over coordinate space

can be simplified as follows:

1 n N
Tr(0) = —= 0)I1 II dR 2
NO) =5 LW( )y=1 T dRy, @
where n! accounts for the indistinguishability of the chains
and A is a thermal wavelength

A = (h*B/2rm)/? (3)

and m is the mass of a bead.'? 43" is the normalization co-
efficient which ensures that distribution ¥ is dimensionless.

We can define a set of distribution functions ¥ with the
constraint that p,[P](r) = p%(r):

Q= {¥YRyy, ..., Ry) | ps[¥](r) = p7(r)} @

All distributions ¥ of the set Q lead to the same density p2(r).
On this set of distribution functions an intrinsic free energy
functional F[¥] can be defined:

F[¥] = Te(PH® + =¥ In W) + F™4[p°] (5)

The first term is the average value of the Hamiltonian for
internal Gaussian chain interaction:!3:14

HY= Y HO ©)

where H f is the Gaussian chain Hamiltonian of chain y,

3

PHY =52 ,

N

Z (Rys - Ry. s— 1)2 (7)
=2

The coefficient « is the Gaussian bond length parameter. The
second term in the free energy functional represents the Gibbs
entropy of the distribution, —kz T¥ In ¥. The third term
F™4[p°] is the mean-field non-ideal contribution.

The key rudiment of dynamic density functional theory is
now that on a coarse-grained time scale the distribution func-
tion ¥ is such that the free energy functional F[¥] is mini-
mized. Hence ¥ is independent of the history of the system,
and is fully characterized by the constraints that it represents
the density distribution and minimizes the free energy func-
tional. This constraint on the density fields is realized by
means of an external potential U, .
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The constraint minimization of the free energy functional
leads to an optimal distribution, which in turn, and by the
one-to-one relation between densities, distributions and exter-
nal potential, can be written as:

BFlpl=nln ® + B~ 'Inn! =Y [ Ur)p,r) dr

+ BF™[p] ®)

Finally, a Flory-Huggins type interaction is introduced for
the non-ideal (inter-chain) interactions:

P01 = [ [ B = Dospa

+ eap(|7 — 7| )pa(r)ps(r)
+ egallr — 7| )pg(r)palr)
+ egp(|7 — 7' )pg(r)ps(r)] dr dr’ )

where ¢;,(|r —7'|) is a mean-field energetic interaction
between beads of type I at r and J at 1/, defined by the same
Gaussian kernel as in the ideal chain Hamiltonian

3\ 3
eu(|r—r’|)se?,<w) exp[—ﬁa—r')] (1)

The mean-field intrinsic chemical potentials can easily be
derived by functional differentiation of the free energy:
u(r) = 6F/5p,(r). At equilibrium p,(r) = const, which results in
the familiar self-consistent field equations for the mean-field
Gaussian chain model. In general, these equations will have
many solutions, one of which will be a state of lowest free
energy; most states will be metastable. When the system is not
in equilibrium, —Vy,(r) is a thermodynamic force, which by
the inversion of the density functional and the explicit form of
the non-ideal interactions is a unique functional of the density.
Based on these equations, we can set up a generalized time-
dependent Ginzburg-Landau theory.

The derivation of the diffusive dynamics of the molecular
ensemble is based on the assumption that for each type of
bead I the local flux is proportional to the local bead concen-
tration and the local thermodynamic driving force: J; =
—Mp,Vu; + J;, where J; is a stochastic flux (related to
thermal noise). Together with the continuity equation:

0p;

—+V-J =0 11

SV, (11)
this leads to simple diagonal functional Langevin equations
(stochastic diffusion equations) in the density fields with a
Gaussian distribution of the noise:

0

T =MV - Vi + 1y (12)
However, the fluctuations in the total density of this simple
system are not realistic since finite compressibility is not
enforced by the mean-field potential chosen (see below).
Therefore, total density fluctuations are simply removed by
introducing an incompressibility constraint:

1
Loalr: ) + pylr, )] = (13)

where vy is the average bead volume. This condition then
leads to ‘exchange’ Langevin equations:

op

a—tA = MugV - pppsVipa — sl +1 (14)
P8 _ MgV - o paV 15
E— UsV - papsVIkg — ual — 1 (15)



Here M is a bead mobility parameter. The kinetic coefficient
Muvp, pp models a local exchange mechanism. Hence the
model is strictly valid only for Rouse dynamics.

The distribution of the Gaussian noise satisfies the
fluctuation—dissipation theorem and ensures that the time
integration of the Langevin equations generates an ensemble
of density fields with Boltzmann distributions:

{nir, 1)) =0 (16)
2Muy
e, o, £)> = — TU 8t — 1)V,

X O(r —1)ps pgV, a7

Results and discussion

The phase separation kinetics and phase structure of pluronic
water mixtures have been studied for three poly(ethylene
oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-
PPO-PEO) block copolymers of different compositions,
(EO)(PO)s,(EO)s (L62), (EO),5(PO)3o(EO);; (L64) and
(EO);,(PO)s5(EO);, (P105), by using the Mesodyn simulation
method. Temperature is discussed here as an influencing
factor. The time evolution trajectory of the microphage
separation kinetics is also discussed in detail.

The ‘equivalent chain’!? method was used to find a Gauss-
ian chain which behaves as the pluronic molecule. In this
method, the Gaussian chain parameters N and « are calcu-
lated from the end distribution <r?) and the length along the
chain X, (I; is the length of backbone bond i).

The end distribution for the (EO)y(PO)(EO)yx molecule can
be estimated from the characteristic ratios as

(r?) =2XCIgc + 20g0) + YCRL (B + 2120)  (18)
and the length of the backbone is
2 1= 2X + Ylee + 2co) (19)

Table 1 shows the parameters used here for the
(EO)x(PO)y(EO)x molecule. The characteristic ratios for EO
and PO homopolymers used here are 5.2'3 and 6.0'* respec-
tively. These values are determined by experiments.

Table 1 The parameters for the (EO)4(PO),(EO), molecule

L 0.153 nm
Leo 0.143 nm
Lec + 2L 0.439 nm
L&+ 2LE, 0.0646 nm?
CE? 52

cro 6.0

Table 2 The Gaussian chain parameters

Molecular Gaussian
Polymer formula chain N o/nm
L62 E6P34E6 E3P18E3 24 0.84
L64 E13P30E13 E7P16E7 30 0.82
P105 E37P58E37 E20P31E20 71 0.82

For a Gaussian chain {(r*> = Na? and XI, = Na, which,
combined with eqns. (18) and (19), can give the results of the
Gaussian chain parameters. Table 2 shows the results.

The solvent-polymer interaction parameters were calcu-
lated from vapor pressure data of aqueous homopolymer solu-
tions,*! using the Flory—Huggins expression

2y =0"{In(p/p°) —In(1 — 6) — (1 — I/N)0}  (20)

where p is the vapor pressure and 6 is the polymer volume
fraction. The parameter N’ is the chain length, which was the
number of monomers per bead. Table 3 shows the value of N’
for L62, L64 and P105 respectively. The results indicate that
all N’ are nearly equal to 2, and so we used 2 as the value of
N’ to perform the parameterization. The polymer volume frac-
tion 6 in our simulations is the same value: 0.50. So the inter-
action parameters used here are ypg = 1.4, yps = 1.7 for all the
calculations. The parameter ygp used was the estimated value
4.0.

The mesoscopic dynamics simulations were performed by
using the Mesodyn module of Cerious2. The dimensions of
the simulation lattice used here are (32, 32, 32). The ratio of
the bond length o and the cell length h is automatically set to
o/h = 1.15430 to ensure isotropy of all grid-restricted oper-
ators.!s
. The bead volume v of three types E, P, S used here was 300
A3 and the bead diffusion coefficients D = f~1M of three
types were set at 1.0 x 1077 cm? s~ 1.

The product of the time step and the diffusion coefficient
affects the actual dimensionless time step taken by the
program. To ensure a stable numerical algorithm, it is advis-
able to choose all diffusion coefficients D and time step such
that their product divided by the cell size squared is between
0.1 and 1.0. The time step used here was 50.00 ns.

Table 3 The value of N’ for L62, L64 and P105

L62 L64 P105
E 6/3 13/7 37/20
P 34/18 30/16 58/31

()
Fig. 1 PO isosurface representations of the (a) L62, (b) L64, and (c) P105 solutions.
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The noise scaling parameter used was 100 and the com-
pressibility parameter was fixed at 10.0 (see refs. 16 and 17 for
detailed discussion).

To compare the three types of pluronic water mixture, the
simulations were performed with the same polymer concentra-
tion. Volume concentration in all cases was 0.50 here. Fig. 1
shows the morphology of the systems of different copolymers
after 1000 simulation steps. The figure shows the isosurface of
bead PO at isolevel 0,5 = 0.70. The simulation temperature
was set at 298 K here.

The simulation result shows that the L62 solution forms a
gel morphology. The morphology of L64 solutions is a tran-
sition between gel and micelle. The P105 solution forms a
micelle morphology. This is in agreement with experimental
results.8

Although the molecular weight of the polymers is in the
order L62 < L64 < P105, the content of the PO component is
in the opposite order P105 < L64 < L62. The less hydropho-
bic PO component, the less possibility there is of forming a
core of the hydrophobic region. In this respect the result is
reasonable.

Several simulations have been performed to discuss the
effects of temperature on the phase behavior of the copoly-
mers. The three pluronic water mixtures have been simulated
at three different temperatures: 298 K, 323 K, 373 K. Figs.
2-4 show the Fourier transform result of the density field of
L62 solution (volume concentration was 0.50) after 1000 steps
of the Mesodyn simulation.

The primary peaks of the three figures are located at 0.142,
0.154, 0.176 respectively. This means that, with the increase of

20

298 K

15}

amplitude
=

00 02 04 06 08 1.0 12 1.4
frequency

Fig. 2 The Fourier transform of the density field of L62 solution at
298 K.

323 K
15+

10

amplitude

00 02 04 06 0.8 1.0 12 14
frequency

Fig. 3 The Fourier transform of the density field of L62 solution at
323 K.
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Fig. 4 The Fourier transform of the density field of L62 solution at
373 K.

the temperature, the periodicity of the density field shifts from
7.04 A, 649 A to 5.68 A. The Fourier transform results indi-
cate that, with the increase of the temperature, the frequency
of the density field increases too. This is in agreement with
Alexandridis’s experimental results.'® An increase of the tem-
perature results in a decrease in the interfacial area and an
increase in the periodicity of the L62-water system. Brown’s
experimental work!® gives a similar conclusion that the
apparent micellar radius decreases with increasing tem-
perature.

Till now, there has been no experimental information about
the time scale of the phase separation of the pluronic water
mixture. The microphage structures are determined after days
or weeks of equilibrium time, while the phase separation
kinetics is artificially enhanced by repeated centrifugation.?®

The Mesodyn simulation clearly gives the phase separation
process. Fig. 5 gives the time evolution of the order parameter
P of L62 solution simulated at 298 K. The dimensionless
order parameter P is defined as P = V™! Z [ 03(r) dr — Z(6)*.

Fig. 5 shows that the time evolution of the phase separation
can be divided into two stages. First, the system rapidly
formed the raw morphology of micelle or gel. In this stage, the
order parameter ascended quickly. The first stage takes 10 ps.
Second, the system changed in a slow way to overcome the
defects formed in the first stage. This stage was time-
consuming. Approximately, the time of the first stage can be
regarded as the time of the phase separation.

In order to discuss the influence of the temperature on the
time evolution of the phase separation, the three pluronic

0.16

0.14r

order parameter
o o o o
o o = o
d® ® o N
T T T T

o

o

=
T

0.02 c

0.00 ' : : :
0 500 1000 1500 2000

time

Fig. 5 Time evolution of the dimensionless order parameter P: the
labels a, b and c refer to beads E, P and S, respectively.



Table 4 The time for phase separation

Time/us
Temperature/K L62 Lo4 P105
298 10 3.5 2.0
323 15 43 2.6
373 30 5.0 43

water mixtures have been simulated at three different tem-
peratures: 298 K, 323 K, 373 K. Table 4 shows the simulation
results.

The simulation results show that, when the temperature
increases, the phase separation process becomes slow. The
effects of temperature on the phase separation process can be
understood as that the hydrophobicity of the polymer is
enhanced when the temperature increases. The interaction
between the copolymer and the water solvent takes a longer
time and the periodicity of the morphology increases.

Conclusion

The Mesodyn ‘equivalent chain’ method was successfully used
to simulate pluronic water mixtures and to describe the
kinetic process. The simulation results show that with the
same volume concentration of the polymer (0.50), the L62,
L64 and P105 solutions formed gel, transition and micelle
morphology respectively. This is in agreement with experi-
ment.!8

The influence of the temperature on the time evolution of
the phase separation and the phase morphology is discussed.
The Fourier transform result indicates that when the tem-
perature increases, the frequency increases too. This result is
the same as Alexandridis’s work.'® Their work shows that an
increase of the temperature results in a decrease in the inter-
facial area and an increase in the periodicity of the L62 and
L64 lamellae. Brown’s experimental work!® shows a similar
result that the apparent micellar radius decreases with increas-
ing temperature. The simulation result of the three polymer
solutions indicates that with temperature increase, the phase
separation process becomes slow. The effects of temperature
on the phase separation process can be understood as that the

hydrophobicity of the polymer is enhanced when the tem-
perature increases. The interaction between the copolymer
and the water solvent takes a longer time and the periodicity
of the morphology increases.
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