English 
     
   首 页
   热点信息
学生工作办公室简介
联系我们
语言中心主任致辞
培养方案
专业介绍
招生问答
请加QQ群312279505
孙旭辉教授课题组在ACS Nano上发表论文
发布时间:2018-03-13 点击:595

题目:

Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

 

作者:

Yanqin Yang, Na Sun, Zhen Wen,* Ping Cheng, Hechuang Zheng, Huiyun Shao, Yujian Xia, Chen Chen, Huiwen Lan, Xinkai Xie, Changjie Zhou, Jun Zhong, Xuhui Sun,* and Shuit-Tong Lee*

 

单位:

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China

 

摘要:

The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as 300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm2 produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m2, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices.

 

影响因子:

13.942

 

分区情况:

一区

 

链接:

https://pubs.acs.org/doi/abs/10.1021/acsnano.8b00147

 

 

责任编辑:向丹婷


Copyright © 2012 苏州大学纳米科学技术学院 All Rights Reserved.
  地址:苏州工业园区仁爱路199号910楼  邮编:215123
您是第 位访问者