English 
     
   首 页
   热点信息
学生工作办公室简介
联系我们
语言中心主任致辞
培养方案
专业介绍
招生问答
请加QQ群312279505
迟力峰教授课题组和西南交通大学崔树勋教授课题组合作在Angewandte Chemie International Edition上发表论文
发布时间:2019-03-26 点击:735

题目:

Towards Unveiling the Exact Molecular Structure of Amorphous Red Phosphorus by Single-molecule Studies


作者:

Song Zhang,a,+ Hujun Qian,b,+ Zhonghua Liu,c Hongyu Ju,a Zhongyuan Lu,b Haiming Zhang,c Lifeng Chi,c,* Shuxun Cuia,*


单位:

a Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China

b State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China

c Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China


摘要:

Since the discovery of amorphous red phosphorus (ared P) in 1847, a number of possible structures of a-red P have been proposed. However, the exact molecular structure of a-red P is not determined yet due to the amorphous nature. Here in this study, we utilize several methods to investigate some basic properties of a-red P, which are helpful to determine the structure. The experimental results from scanning tunneling microscopy (STM) and gel permeation chromatography (GPC) confirm that ared P is a linear inorganic polymer with a broad molecular weight distribution. The theoretical singlemolecule elasticities of the possible ared P structures are obtained by quantum mechanical (QM) calculations. It is found that the experimental singlemolecule elasticity of ared P measured by singlemolecule AFM matches with the theoretical result of the zigzag ladder structure, indicating that ared P may adopt this structure. Although this conclusion needs further validation in the future, this fundamental study represents a helpful attempt to solve the long-lasting riddle of red phosphorus. It is expected that the strategy utilized in this work can be applied to study other inorganic polymers.


影响因子:

12.102


分区情况:

一区


链接:

https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201811152


责任编辑:向丹婷


Copyright © 2012 苏州大学纳米科学技术学院 All Rights Reserved.
  地址:苏州工业园区仁爱路199号910楼  邮编:215123
您是第 位访问者