Research Group Banner
Publication


Google Scholar: https://scholar.google.com/citations?user=uXYqXdEAAAAJ


( denotes equal first-authorship)


2015-2024


36. Soft hydrogel semiconductors with augmented biointeractive functions.

Dai, Y., Wai, S., Li, P., Shan, N., Cao, Z., Li, Y., Wang, Y., Liu, Y., Liu, W., Tang, K., Liu, Y., Hua, M., Li, S., Li, N., Chatterji, S., Fry, H. C., Lee, S., Zhang, C., Weires, M., Sutyak, S., Shi, J., Zhu, C., Xu, J., Gu, X., Tian, B.& Wang, S.-H.

Science 386, 431-439 (2024).


35. Depolymerizable and recyclable luminescent polymers with high light-emitting efficiencies.

Liu, W.†, Wu, Y.-K., Vriza, K., Zhang C., Diroll, T. B., Li, Y., Guo P. J., Mei J.-G., Wang, S.-H., Xu, J.

Nat. Sustain. 7, 1048–1056 (2024).


34. Intrinsically stretchable electroluminescent materials.

Liu, W., Wang, G., Wang, S.-H.

CCS Chem. 6, 1360–1379 (2024).


33. An intrinsically stretchable power-source system for bioelectronics.

Cheng, P., Dai, S., Liu, Y., Li, Y., Hayashi, H., Papani, R., Su, Q., Li, N., Dai, Y.-H., Liu, W., Hu, H.-W., Liu, Z.-X., Jin, L.-H., Hibino, N., Wen, Z., Sun, X.-H., Wang, S.-H.

Device 2, 100216 (2024).


32. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces.

Li, N., Li, Y., Cheng, Z., Liu, Y.-D., Dai, Y.-H., Kang, S., Li, S.-S., Shan, N.-S., Wai, S., Ziaja, A., Wang, Y.F., Strzalka, J., Liu. W., Zhang, C., Gu, X.-D., Hubbell, J.A., Tian, B.-Z., Wang, S.-H.

Science 381, 686-693 (2023).


31. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. 

Li, Y., Li, N., Liu, W., Prominski, A., Kang, S., Dai, Y., Liu, Y., Hu, H., Wai, S., Dai, S., Cheng, Z., Su, Q., Cheng, P., Wei, C., Jin, L.-H., Hubbell, J.A., Tian, Tian, B.-Z., Wang, S.-H.

Nat. Commun. 14, 4488 (2023).


30. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence.

Liu, W.†, Zhang, C., Alessandri, R., Diroll, T. B., Li, Y, Fan, X.-C, Wang, K., Cho, H., Liu, Y.-D., Dai, Y.-H., Su, Q., Li, N., Li, S.-S, Wai, S., Xu, J., Zhang, X.-H, Talapin, V. D., de Pablo, J. J., Wang, S.-H.

Nat. Mater. 22, 737–745 (2023).


29. Intermolecular pi-pi-packing-induced thermally activated delayed fluorescence: a novel pathway toward luminescence efficiency of nearly 100%.

Wang, K., Fan, X.-C., Zhang, D., Tsuchiya, Y., Mei, L., Shi, Y.-Z., Tanaka, M., Lin, Z., Lee, Y.-T., Xie, Y., Pan, Y., Zhang, X., Liu, W., Dai, G.-L., Chen, J.-X., Wu, B., Zhong, J., Yuan, J.-Y., Zheng, C.-J., Yu, J., Jen, A. K. Y., Chen, X.-K., Lee, C.-S., Adachi, C. Zhang, X.

ChemRxiv. Preprint, DOI: 10.26434/chemrxiv.13699057.v1. (2023)



28. Skin-like stretchable neuromorphic transistors for on-body processing of health data with artificial intelligence.

Dai, S.-L,Dai, Y.-H., Xia, F.-F., Huang, J., Zhao, Z.-X., Li, Y, Liu, Y.-D., Cheng, P., Strzalka, J., Li, S.-S., Li, N., Su, Q., Wai, S., Liu, W., Zhang, C., Yin, J., Yang, J., Stevens, R., Xu, J. Wang, S.-H.

Matter  5, 1-16 (2022).


27. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors.

Dai, Y.-H., Dai, S.-L,Li, N., Li, Y, Moser, M., Strzalka. J., Prominski, A, Liu, Y.-D., Zhang, Q.-T., Li, S.-S., Hu, H.-W., Liu, W., Chatterji, Shivani., Cheng, P., Tian, B.-Z., Mcculloch, I. J., Wang, S.-H.

Adv. Mater. 34, 2201178 (2022).


26. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins.

Su, Q., Zou, Q., Li, Y., Chen, Y., Teng, S. Y., Kelleher, J. T., Nith, R., Cheng, P., Li, N., Liu, W., Dai, S., Liu, Y.-D, Mazursky, A., Xu, J., Jin, L., Lopes, P. Wang, S.-H.

Sci. Adv. 7, eabi4563 (2021).


25. Nonconjugated triptycene-spaced donor–acceptor-type emitters showing thermally activated delayed fluorescence via both intra-and intermolecular charge-transfer transitions.

Dai, G., Zhang, M., Wang, K., Fan, X., Shi, Y., Sun, D., Liu, W., Chen, J., Yu, J. Ou, X., Xiong, S., Zheng, C. Zhang X.

ACS Appl. Mater. Interfaces 13, 2519325201 (2021).


24. Hydrogen bond-modulated molecular packing and its applications in high-performance non-doped organic electroluminescence.

Shi, Y., Wang, K., Tsuchiya, Y., Liu, W., Komino, T., Fan, X.-C., Sun, D.-M., Dai, G.-L., Chen, J.-X., Zhang, M., Zheng, C.-J., Xiong, S.-Y., Ou, X.-M., Yu, J., Jie, J.-S., Lee, C.-S., Adachi, C., Zhang, X.-H.

Mater. Horiz. 7, 2734-2740 (2020).


23. Tricomponent exciplex emitter realizing over 20% external quantum efficiency in organic light-emitting diode with multiple reverse intersystem crossing channels.

Zhang, M., Liu, W.†, Zheng, C. J., Wang, K., Shi, Y. Z., Li, X., Lin, H., Tao, S. L. Zhang, X. H.

Adv. Sci. 6, 1801938, (2019).


22. Highly efficient thermally activated delayed fluorescence emitter developed by replacing carbazole with 1, 3, 6, 8tetramethyl-carbazole.

Cai, J.-L., Liu, W.†, Wang, K., Chen, J.-X., Shi, Y.-Z., Zhang, M., Zheng, C.-J., Tao, S.-L. Zhang, X.-H.

Front. Chem. 7, 17 (2019).


21. Dibenzofuran/dibenzothiophene as the secondary electron-donors for highly efficient blue thermally activated delayed fluorescence emitters.

Tao, W.-W., Wang, K., Chen, J.-X., Shi, Y.-Z., Liu, W., Zheng, C.-J., Li, Y.-Q., Yu, J., Ou, X.-M. Zhang, X.-H.

J. Mater. Chem. C 7, 4475-4483 (2019).


20. Thermally activated delayed fluorescence carbonyl derivatives for organic light-emitting diodes with extremely narrow full width at half-maximum.

Li, X., Shi, Y.-Z., Wang, K., Zhang, M., Zheng, C.-J., Sun, D.-M., Dai, G.-L., Fan, X.-C., Wang, D.-Q. Liu, W., Li, Y.-Q., Yu, J., Ou, X. M., Adachi, C. Zhang, X. H.

ACS Appl. Mater. Interfaces 11, 13472-13480 (2019).


19. Control of dual conformations: developing thermally activated delayed fluorescence emitters for highly efficient single-emitter white organic light-emitting diodes.

Wang, K., Shi, Y. Z., Zheng, C. J., Liu, W., Liang, K., Li, X., Zhang, M., Lin, H., Tao, S. L., Lee, C. S., Ou, X. M. Zhang, X. H.

ACS Appl. Mater. Interfaces 10, 31515-31525 (2018).


18. Intermolecular charge-transfer transition emitter showing thermally activated delayed fluorescence for efficient non-doped OLEDs.

Shi, Y. Z., Wang, K., Li, X., Dai, G. L., Liu, W., Ke, K., Zhang, M., Tao, S. L., Zheng, C. J., Ou, X. M. Zhang, X. H.

Angew. Chem. Int. Ed. 57, 9480-9484 (2018).


17. Efficient solution-processed orange-red organic light-emitting diodes based on a novel thermally activated delayed fluorescence emitter.

Li, X., Wang, K., Shi, Y.-Z., Zhang, M., Dai, G.-L., Liu, W., Zheng, C.-J., Ou, X.-M. Zhang, X.-H.

J. Mater. Chem. C 6, 9152-9157 (2018).


16. Red organic light-emitting diode with external quantum efficiency beyond 20% based on a novel thermally activated delayed fluorescence emitter.

Chen, J.-X., Wang, K., Zheng, C.-J., Zhang, M., Shi, Y.-Z., Tao, S.-L., Lin, H., Liu, W., Tao, W.-W., Ou, X.-M. Zhang, X.-H.

Adv. Sci. 5, 1800436 (2018).


15. Highly efficient thermally activated delayed fluorescence emitters based on novel Indolo [2, 3-b] acridine electron-donor.

Chen, J.-X., Tao, W.-W., Wang, K., Zheng, C.-J., Liu, W., Li, X., Ou, X.-M. Zhang, X.-H.

Org. Electron. 57, 327-334 (2018).


14. Efficient, color-stable and high color-rendering-index white organic light-emitting diodes employing full thermally activated delayed fluorescence system.

Zhang, M., Wang, K., Zheng, C.-J., Liu, W., Lin, H., Tao, S.-L. Zhang, X.-H.

Org. Electron. 50, 466-472 (2017).


13. Avoiding energy loss on TADF emitters: controlling the dual conformations of D-A structure molecules based on the pseudoplanar segments.

Wang, K., Zheng, C. J., Liu, W., Liang, K., Shi, Y. Z., Tao, S. L., Lee, C. S., Ou, X. M. Zhang, X.H.

Adv. Mater. 29, 1701476 (2017).


12. A comparative study of carbazole-based thermally activated delayed fluorescence emitters with different steric hindrance.

Wang, K., Liu, W., Zheng, C. J., Shi, Y. Z., Liang, K., Zhang, M., Ou, X. M. Zhang, X. H.

J. Mater. Chem. C 5, 4797-4803 (2017).


11. Coumarin-based thermally activated delayed fluorescence emitters with high external quantum efficiency and low efficiency roll-off in the devices.

Chen, J.-X., Liu, W., Zheng, C.-J., Wang, K., Liang, K., Shi, Y.-Z., Ou, X.-M. Zhang, X.-H.

ACS Appl. Mater. Interfaces 9, 8848-8854 (2017).


10. 1, 3-茚二酮为电子受体的热激活延迟荧光分子的合成及其在有机发光二极管中的应用.

陈冬阳, 刘伟, 王凯, 郑才俊张晓宏.

影像科学与光化学 35, 698-711 (2017).


9. High-performance red organic light-emitting devices based on an exciplex system with thermally activated delayed fluorescence characteristic.

Yuan, S., Du, X., Zhao, J., Liu, W., Lin, H., Zheng, C., Tao, S. Zhang, X.

Org. Electron. 39, 10-15 (2016).


8. Theoretical investigation of the singlet–triplet splittings for carbazole-based thermally activated delayed fluorescence emitters.

Liang, K., Zheng, C., Wang, K., Liu, W., Guo, Z., Li, Y. Zhang, X.

Phys. Chem. Chem. Phys. 18, 26623-26629 (2016).


7. Bromine-substituted triphenylamine derivatives with improved hole-mobility for highly efficient green phosphorescent OLEDs with a low operating voltage.

Du, X., Zhao, J., Liu, W., Wang, K., Yuan, S., Zheng, C., Lin, H., Tao, S. Zhang, X.-H.

J. Mater. Chem. C 4, 10301-10308 (2016).


6. Isomeric thermally activated delayed fluorescence emitters for color purity-improved emission in organic light-emitting devices.

Chen, D.-Y., Liu, W., Zheng, C.-J., Wang, K., Li, F., Tao, S. L., Ou, X.-M. Zhang, X.-H.

ACS   Appl. Mater. Interfaces 8, 16791-16798 (2016).


5. Novel strategy to develop exciplex emitters for high-performance OLEDs by employing thermally activated delayed fluorescence materials.

Liu, W., Chen, J.-X., Zheng, C.-J., Wang, K., Chen, D.-Y., Li, F., Dong, Y.-P., Lee, C.-S., Ou, X.-M. Zhang, X.H.

Adv. Funct. Mater. 26, 2002-2008 (2016).


4. High performance all fluorescence white organic light emitting devices with a highly simplified structure based on thermally activated delayed fluorescence dopants and host.

Liu, W., Zheng, C. J., Wang, K., Zhang, M., Chen, D. Y., Tao, S. L., Li, F., Dong, Y. P., Lee, C. S., Ou, X. M. Zhang, X. H.

ACS Appl. Mater. Interfaces 8, 3298432991 (2016).


3. Novel carbazolpyridine-carbonitrile derivative as excellent blue thermally activated delayed fluorescence emitter for highly efficient organic light-emitting devices.

Liu, W., Zheng, C. J., Wang, K., Chen, Z., Chen, D. Y., Li, F., Ou, X. M., Dong, Y. P. Zhang, X. H.

ACS Appl. Mater. Interfaces 7, 18930-18936 (2015).


2. A novel nicotinonitrile derivative as an excellent multifunctional blue fluorophore for highly efficient hybrid white organic light-emitting devices.

Liu, W.†, Chen, Z., Zheng, C.-J., Liu, X.-K., Wang, K., Li, F., Dong, Y.-P., Ou, X.-M. Zhang, X.-H.

J. Mater. Chem. C 3, 8817-8823 (2015).


1. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex.

Liu, X. K., Chen, Z., Zheng, C. J., Chen, M., Liu, W., Zhang, X. H.  Lee, C. S.

Adv. Mater. 27, 2025-2030 (2015).